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Outline

• Round table introduction
• Social media and crowdsourcing for disaster response

• Challenges + potential role of AI for enhancing the tools
• Tools and role of AI 

• Case study Covid, flood Nepal, flood and gender 
• Hands-on Part

• Visual Cit
• CSProject builder. 

• Discussion
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Social & crowd platform
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Data Gathering
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Data Analysis - Relevance 
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Data Analysis - Relevance 
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Data Analysis - Geolocation 
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Data Analysis - Geolocation 



17

Data Visualization - Witness Component
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Data Visualization - Witness Component



Lessons learnt

● Need to improve AI filters to reduce the volume of information 
before sending that to the crowd

● Geolocation task is still complicated task. It is not s micro task!
● Need to improve the aggregation function to reduce the 

redundancy needed
● Availability of the crowd
● Engage people beyond data collection and data analysis. 
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https://Crowd4SDG.eu



Citizen Science Solution Kit
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Tool 1: CS Project Builder - Data Analysis
including CrowdAnalysis component 

Tool 2: CS Logger - Data Collection

Tool 3: Visual Cit - Social media data analyzer

Tool 4: Decidim4CS - Open Governance

https://crowd4sdg.eu/about-2/tools/



Thank you!
www.crowd4sdg.eu



Consensus models
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Majority Voting Probabilistic

Crowdsourced annotations

These do NOT model individual annotator performance.



Advanced consensus models - Dawid-Skene
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Annotator error-rates

Consensus

Dawid, A. P., & Skene, A. M. (1979).
Maximum Likelihood Estimation of
Observer Error-Rates Using the EM
Algorithm. Applied Statistics, 28(1), 20.
https://doi.org/10.2307/2346806

More reliable consensus is 
possible thanks to modelling
the annotator behavior.
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Motivation

• Support emergency response with evidence-based content from 
social media (focus on Twitter)

• Driver: SDG 13, Climate action
• Towards improving indicator 13.1.1 Number of deaths, missing persons and 

directly affected persons attributed to disasters per 100,000 population



Crowd4SDG case studies

• COVID-19 behavioral impact: Face masks (VisualCit)

• Flood and gender SDG13 + SDG5

• TriggerCit: Timeliness of the delivery in evaluating the onset of flood 
events (Nepal and Thailand)
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Social Media provides a trove of 
information that, if aggregated and 
analysed appropriately can provide 
important statistical indicators to 
policy makers.

Building indicators from social media



We investigate whether it is possible
to obtain such data by aggregating 
information from images posted 
to social media

From images posted to social media



Data collection process on Twitter
1. Focus on a specific goal or situation

1. Twitter sensing with language-specific small word dictionaries

1. Selection of potentially relevant image contents with VisualCit

1. Text analysis of outputs for dictionary refinement

1. Geolocation of posts with CIME

1. Crowdsourcing to extract relevant information

1. Visualize results



Case studies



COVID-19 - From Tweets to a Face mask 
dataset and indicators

• Social distancing
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• Face mask usage

Examples end of August, 2020

V. Negri,  et al., Image-based Social Sensing: Combining AI and the Crowd to Mine Policy-Adherence Indicators 
from Twitter, ICSE, Track Software Engineering in Society, May 2021



Building indicators from social media

• Collecting images from social media

Twitter/social 
crawling

Duplicate URL 
& 

Similar Image 
Filters

Keyword selection
(with Citizen Scientists)

Semantic Image Filters
Photo/No photo
Not Safe for Work
Public places
People

Geocoding



Building indicators from social media

• Deriving indicators
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Crowdsourcing
Project Builder
Asking Citizen Scientists

Aggregate Statistics and 
MLQuality evaluation

Building indicators
Building new classifiers

Visualisation

https://pernici.faculty.polimi.it/crowd4sdgpolimi/



Evaluating the impact of floods on gender 
equality

• Twitter crawling
• Flood classifier (fine-

tuning Xception 
pretrained with ImageNet)
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Olimpia Rivera, Juan Felipe Calderon, Paul Planchon, Barbara Pernici, 
Evaluating the impact of floods on gender equality from social media evidence, 
2nd International Research Workshop on Women IS, and Grand Challenges, 
Dec. 2021
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Do they look in danger? Most popular topics by gender

Olimpia Rivera, Juan Felipe Calderon, Paul Planchon, Barbara Pernici, 
Evaluating the impact of floods on gender equality from social media evidence, 
2nd International Research Workshop on Women IS, and Grand Challenges, 
Dec. 2021



TriggerCit: Main phases 



Multilingual context and event detection

We focused on very small, no-cost dictionaries. 
Language-based effect of events on social media volumes



Experimental results – Thailand case study

Tweet counts for seed dictionary entries

Data volumes through processing steps

The event onset is clearly identified



Geolocations / inhabitants ratio by region (a) Twitter native geolocations, (b) Twitter native + CIME 
geolocated, (c) Twitter native + CIME geolocated from extended dataset (with images + promising text-
only tweets), and 
(d) Number of affected persons by region at September, 28th (source: ReliefWeb)

Experimental results – Thailand case study



Experimental results – Nepal case study

Data volumes through processing steps

Tweet counts for seed dictionary entries

The onset of an announcer sub-event
is clearly identified



Experimental results – Nepal case study

Comparing June 16-17  and July 1-2 events with other sources



Time of the events as reported from different sources

Experimental results – Timeliness

Activation-based

Manual

Forecast

Manual



What we are currently working on

• Use validated event data as a ground truth, to benchmark and 
enhance the architecture components, evaluating uncertainty in 
space and time

• Explore the robustness of a supervised approach for automated 
event triggering

• Additional for data layers (additional systems, sensors, models, 
media) for an integrated multi-modal approach
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Social media analysis with VisualCit

crawling, extracting information from social media posts

Barbara Pernici, Carlo Bono, Politecnico di Milano

barbara.pernici@polimi.it

RCIS Tutorial, May 19, 2022
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Agenda

• Extracting information from Twitter for emergencies 
(focus on floods)

• Analysis Pipelines

• VisualCit

• Hands on
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Crowd4SDG: VisualCit pipeline
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C. Cappiello et al., Modeling Adaptive Pipeline for Crowd Enhanced Processes, ER 2021, Oct. 2021



VisualCit Pipeline 
to build indicators from social media 

• Data Preparation
• Collecting images from social media

Twitter/social 
crawling

Duplicate URL & 
Similar Image 

FiltersKeyword selection
(by Citizen Scientists)

Semantic Image Filters
Photo/No photo
Not Safe for Work
Public places
People

Geocoding
CIME 
algorithm
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• Data analysis - Deriving indicators
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Crowdsourcing
Project Builder
Asking Citizen Scientists

Aggregate Statistics and ML
Quality evaluation
Building indicators
Building new classifiers

Visualisation

https://pernici.faculty.polimi.it/crowd4sdgpolimi/

Thematic maps
Benchmarks

Pipeline to build indicators
from social media 



Building a project with VisualCit

0) Define your goals

1) Select images with VisualCit
• Keywords
• Filters

• Try it:
• http://visualcit.polimi.it:7778/

2) Use the collected information
• Set up a crowdsourcing initiative (design questions, identify crowd)
• Compute indicators 
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http://visualcit.polimi.it:7778/
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E2mC Keywords for floods in English and Italian

• en= 
inundate,inundation,overflow,riverlevel,waterflow,swamped,mudslip,engulf,drainage,floode
d,landslide,flooding,riverflow,immerse,torrential,flashflooding,mudflow,floodwater,rainfall,h
ailstorm,cloudburst,mudslip,precipitation,deluge,deluged,engulfed,flood,landslip,mudslide,
submerged,swamp,torrent,waterlevel,tsunami,hail 

• it= 
alluvione,diga,inondazione,inondazioni,dell'alluvione,torrente,pioggia,piovosità,straripamen
to,nubifragio,marea,allagamenti,erosione,frana,sommersi,sommersa,bonifica,aumentare,in
ondato,sommerso,eccezionale,deflusso,precipitazione,diluvio,argine,annegato,salire,terrap
ieno,allagamento,straripare,palude,drenaggio,valanga,grandine,scolo,lungofiume
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VisualCit filters
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Geolocate

• Tweets rarely (3%) have a location associated with them

• Image locations
• User locations

12



13



VisualCit
Interactive interface: visualization in browser 
http://visualcit.polimi.it:7778/

Web service: can be invoked inside a Python programme
See link for details (discussed later)

Some test data can be found in 
Link to folder

https://docs.google.com/document/d/1n2d1twQTlmYNnrLH4IbTL1fS1BbsgyU1GbdaqJuKssQ/edit?usp=sharing
https://www.dropbox.com/sh/3akb5td50ez0ad0/AADs4dzc6HRtknPFcpGa1nt7a?dl=0


Django

Using VisualCit a service

OSM

flaskCrawler/API/CrawlCSV Port 7778

code

browser

Server 131.175.120.2

20001/e2mc/CIME/v1.0
/tweet/dev

Action/API/xxxx

Nominatim

Port 7779

Port 
20001

http://131.175.120.2:7779/Crawler/API/CrawlCSV

http://131.175.120.2:7779/Crawler/API/CrawlCSV


VisualCit endpoints

Endpoint visualization

See services with Command + Option + I on MacOS
Or Command F11 on Windows
then Network

Documentation of available endpoints for VisualCit web services link

In VisualCit interactive service
Download configuration (Get pipeline configuration)

https://docs.google.com/document/d/1n2d1twQTlmYNnrLH4IbTL1fS1BbsgyU1GbdaqJuKssQ/edit?usp=sharing
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Details on classifiers

Meme: based on VGG16 (custom)
Flood: based onXception (custom)
Object: YOLOv5 (also DETR di Facebook, only available in backend)
Scene: PlacesCNN (trained with Places365, based on VGG16)
NSFW: based on MobileNetV2 (not customized)
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Discovering new projects



Contribute to an existing project



Create a new project



Create a new project



Create a new project  



Create a new project - Import tasks



Our project is created!



Contributing to the project



Managing your project
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Task settings
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Export your data
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What’s next?
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Consensus models
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Majority Voting Probabilistic

Crowdsourced annotations

These do NOT model individual annotator performance.



Advanced consensus models - Dawid-Skene
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Annotator error-rates

Consensus

Dawid, A. P., & Skene, A. M. (1979).
Maximum Likelihood Estimation of
Observer Error-Rates Using the EM
Algorithm. Applied Statistics, 28(1), 20.
https://doi.org/10.2307/2346806

More reliable consensus is 
possible thanks to modelling
the annotator behavior.
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● Import annotation data with preprocessing

� Calculate inter-rater reliability

� Model annotators

� Compute the consensuson annotations

� Conduct prospective analysis
(e.g., 'accuracy vs. number of annotations')

� Visualize consensus & annotator error-rates

� and more …

crowdnalysis
analyzing crowdsourced data
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Google Colab Notebook for a hands-on experience👉

https://colab.research.google.com/drive/11RRlu1oYFwICcFBkw09FHU7R2dxGSOtT?usp=sharing
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crowdnalysis: Analyzing crowdsourced data
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Consensus models
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Majority Voting Probabilistic

Crowdsourced annotations

These do NOT model individual annotator performance.



Advanced consensus models - Dawid-Skene
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Annotator error-rates

Consensus

Dawid, A. P., & Skene, A. M. (1979).
Maximum Likelihood Estimation of
Observer Error-Rates Using the EM
Algorithm. Applied Statistics, 28(1), 20.
https://doi.org/10.2307/2346806

More reliable consensus is 
possible thanks to modelling
the annotator behavior.
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● Import annotation data with preprocessing

● Calculate inter-rater reliability

● Model annotators

● Compute the consensus on annotations

● Conduct prospective analysis
(e.g., 'accuracy vs. number of annotations')

● Visualize consensus & annotator error-rates

● and more …

crowdnalysis
analyzing crowdsourced data
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Google Colab Notebook for a hands-on experience👉

https://colab.research.google.com/drive/11RRlu1oYFwICcFBkw09FHU7R2dxGSOtT?usp=sharing
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