

The Challenge of Collecting and Analyzing Information From Citizens and Social Media in Emergencies: the Crowd4SDG Experience and Tools

Barbara Pernici, Jose Luis Fernandez-Marquez, Carlo Bono, Oguz Mulayin RCIS 2022, Barcelona May 19, 2022

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 872944

Barbara Pernici Professor at Politecnico di Milano Head of the information systems group barbara.pernici@polimi.it

Jose Luis Fernandez-Marquez Senior Lecturer at University of Geneva Head of the SDG Accelerator Crowd4SDG Tech. Coordinator Joseluis.Fernandez@unige.ch

Carlo Bono (PhD Candidate at Politecnico di Milano) Oguz Mulayim (Postdoc Researcher at IIIA-CSIC)

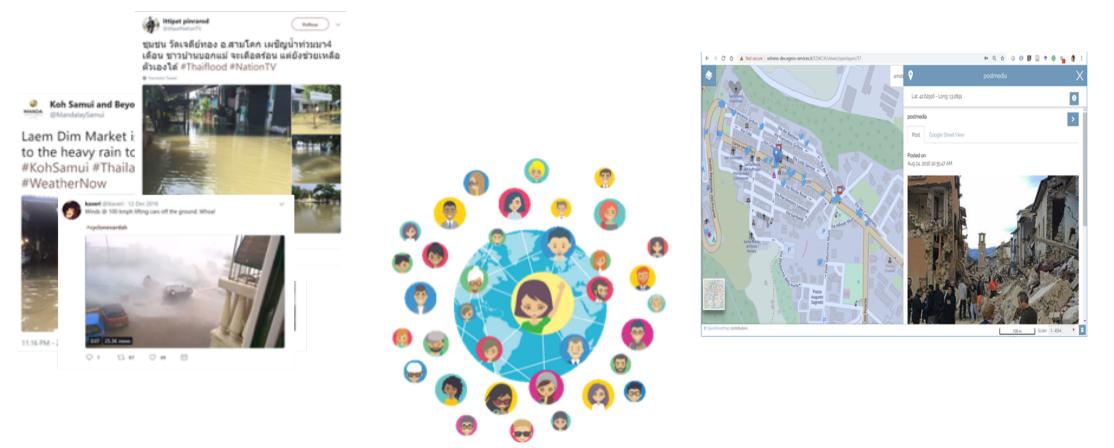
- Round table introduction
- Social media and crowdsourcing for disaster response
 - Challenges + potential role of AI for enhancing the tools
 - Tools and role of AI
- Case study Covid, flood Nepal, flood and gender
- Hands-on Part
 - Visual Cit
 - CSProject builder.
- Discussion

Social media and crowdsourcing for disaster response

Jose Luis Fernandez-Marquez

RCIS 2022, Barcelona May 19, 2022

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 872944



2005 announcement of Pope Benedict XVI

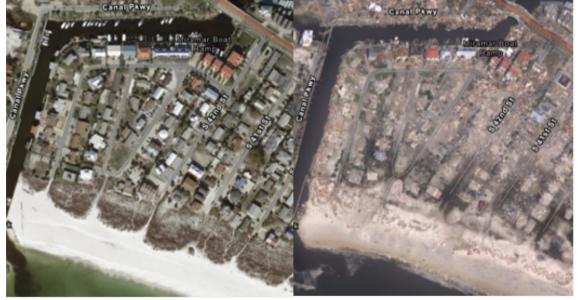
2013 announcement of Pope Francis

"Every year natural disasters kill around 90 thousands people and affect close to 160 million people worldwide" Environmental health in emergencies. **WHO**

Haiti Earthquake, 2010

Chennai floods, 2015

"The first 72 hours after a disaster are crucial; response must begin during that time to save lives" OCHA


Situational Awareness

What is happening and where?

Hurricane Katrina – Satellite Imagine Corporation

Hurricane Michal – Mexico Beach ESRI

Mexico Beach, Florida, last year after Hurricane Michael made landfall.Douglas R. Clifford / Tampa Bay Times via AP

Main Challenges

- Process of large volume of information
- Assessing the relevance of the content and the classification
- Geolocation of the content gathered from social media
- Data quality and reliability.
- Timeliness

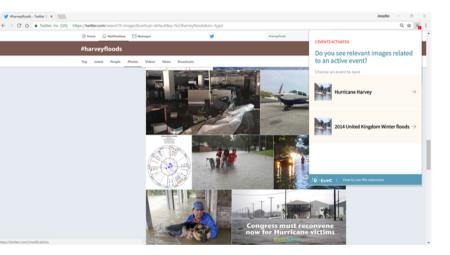
Social & crowd platform

Social Media

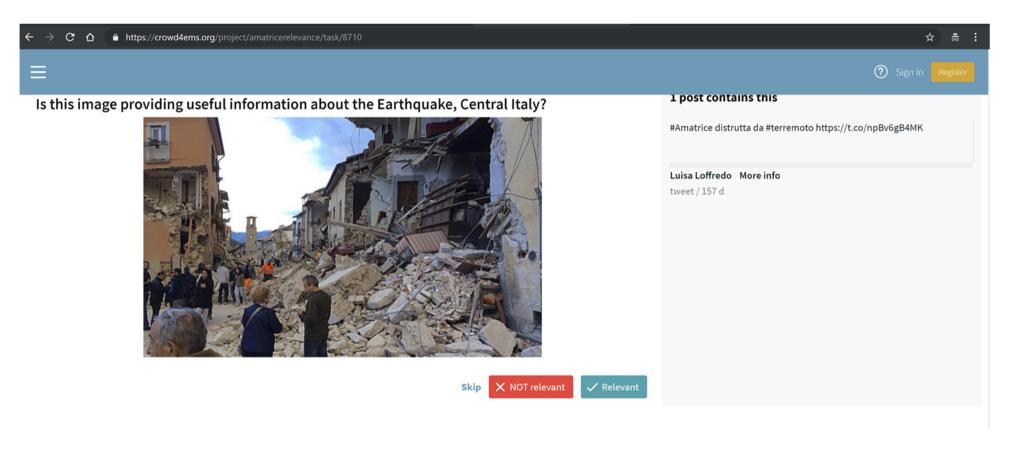
Crowd4EMS

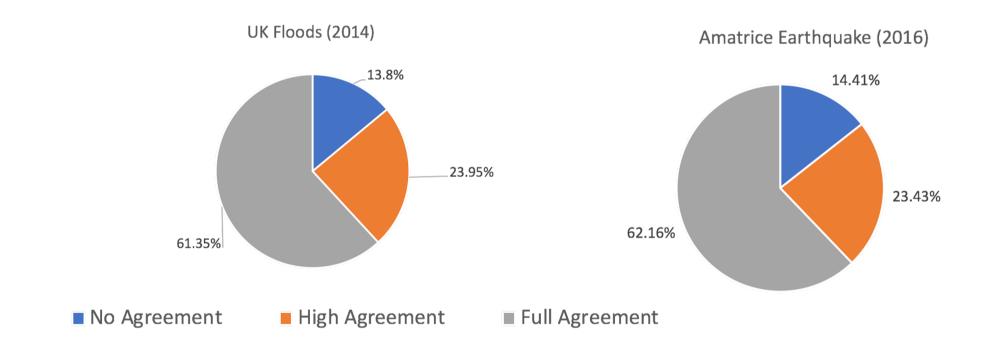
Data Gathering

Crowdsourcing data collection


Social Media Data

CROWD4EMS Chrome Extension




Data Analysis - Relevance

13

Data Analysis - Relevance

Data Analysis - Geolocation

#Amatrice distrutta da #terremoto https://t.co/npBv6gB4MK

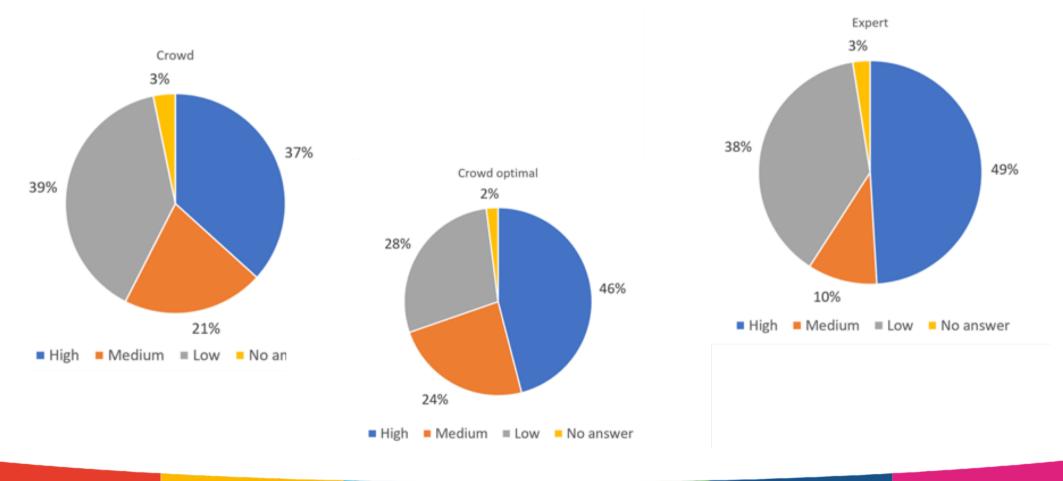
Luisa Loffredo @statuses -@ Jul 5

See original post

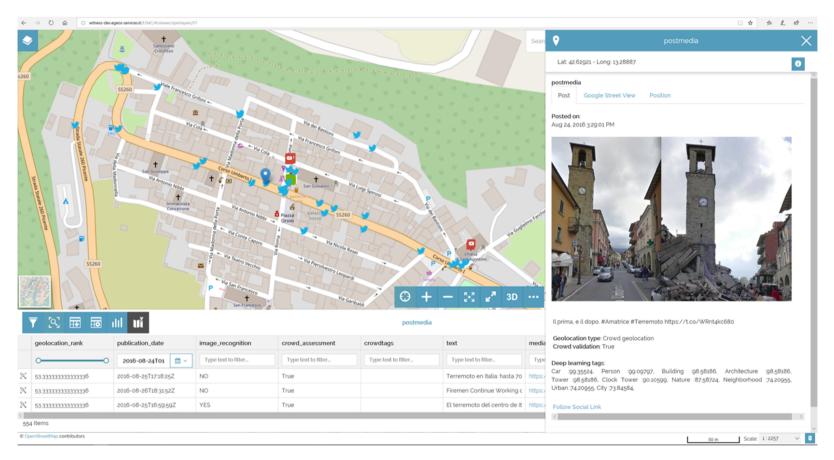
Search Google for image

🛪 Translate on Google

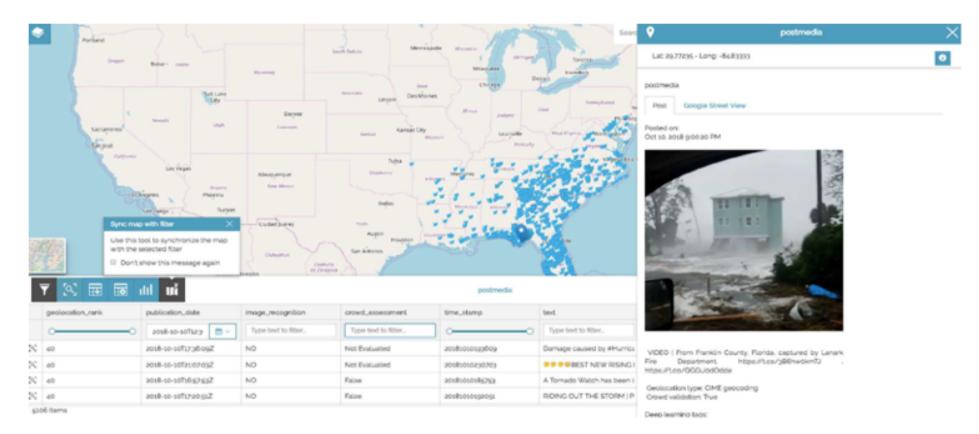
Show comments


Locate the exact position of the damage on the map. Use the search box or drag the flag to point the location. ⑦ Tips

Enter a location


Data Analysis - Geolocation

16



Data Visualization - Witness Component

Data Visualization - Witness Component

18

Lessons learnt

- Need to improve AI filters to reduce the volume of information before sending that to the crowd
- Geolocation task is still complicated task. It is not s micro task!
- Need to improve the aggregation function to reduce the redundancy needed
- Availability of the crowd
- Engage people beyond data collection and data analysis.

https://Crowd4SDG.eu

Citizen Science Solution Kit

Tool 1: CS Project Builder - Data Analysis including CrowdAnalysis component

Tool 2: CS Logger - Data Collection

Tool 3: Visual Cit - Social media data analyzer

Tool 4: Decidim4CS - Open Governance

https://crowd4sdg.eu/about-2/tools/

Thank you!

www.crowd4sdg.eu

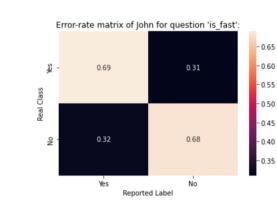
Crowd4**SDG**

	Lask_Iu	user_iu	15_1ast
0	Audi	John	Yes
1	Audi	Matthew	Yes
2	Audi	Andrew	Yes
3	BMW	John	Yes
4	BMW	Matthew	Yes
5	BMW	Matthew	Yes
6	Seat	John	No
7	Seat	Andrew	No
8	Seat	Matthew	No
9	Maserati	John	Yes
10	Maserati	Andrew	Yes
11	GM	Andrew	Yes
12	GM	Matthew	No
13	GM	John	No
14	Mazda	Andrew	Yes
15	Mazda	John	Yes
16	Mazda	Matthew	Yes
17	Kia	Matthew	Yes
18	Kia	Andrew	Yes
19	Kia	John	No

task_id user_id is_fast

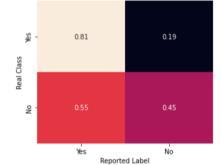
Majority Voting			
	Yes	No	
Audi	1.0	0.0	
BMW	1.0	0.0	
GM	0.0	1.0	
Kia	1.0	0.0	
Maserati	1.0	0.0	
Mazda	1.0	0.0	
Seat	0.0	1.0	

Probabilistic


	Yes	No
Audi	1.000000	0.000000
BMW	1.000000	0.000000
GM	0.333333	0.666667
Kia	0.666667	0.333333
Maserati	1.000000	0.000000
Mazda	1.000000	0.000000
Seat	0.000000	1.000000

These **do NOT model** individual **annotator** performance.

Advanced consensus models - Dawid-Skene


		task_id	user_id	is_fast
	0	Audi	John	Yes
	1	Audi	Matthew	Yes
	2	Audi	Andrew	Yes
	3	BMW	John	Yes
	4	BMW	Matthew	Yes
	5	BMW	Matthew	Yes
	6	Seat	John	No
	7	Seat	Andrew	No
	8	Seat	Matthew	No
	9	Maserati	John	Yes
	10	Maserati	Andrew	Yes
(11	GM	Andrew	Yes
l	12	GM	Matthew	No
l	13	GM	John	No
	14	Mazda	Andrew	Yes
	15	Mazda	John	Yes
	16	Mazda	Matthew	Yes
	17	Kia	Matthew	Yes
	18	Kia	Andrew	Yes
	19	Kia	John	No

More reliable consensus is possible thanks to modelling [the annotator behavior.

-		Juai		U	v .	IM	.00
	Error-rate	matrix	of And	rew for	quest	ion 'is f	fast':

Annotator error-rates

Consensus

	Yes	No
Audi	0.923616	0.076384
BMW	0.946553	0.053447
GM	0.271625	0.728375
Kia	0.716913	0.283087
Maserati	0.848372	0.151628
Mazda	0.923616	0.076384
Seat	0.096134	0.903866

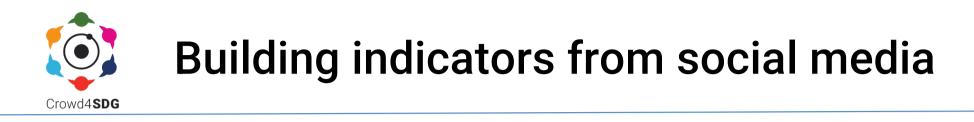
Dawid, A. P., & Skene, A. M. (1979). Maximum Likelihood Estimation of Observer Error-Rates Using the EM Algorithm. *Applied Statistics*, 28(1), 20. https://doi.org/10.2307/2346806

Case studies

Barbara Pernici

Politecnico di Milano

May 19, 2022


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 872944

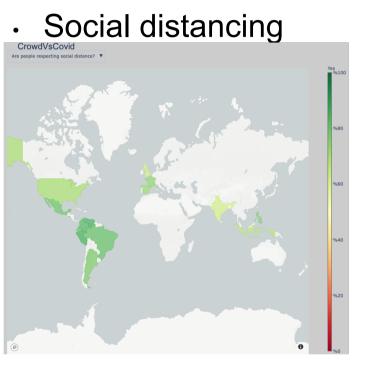
- Support emergency response with evidence-based content from social media (focus on Twitter)
- Driver: SDG 13, Climate action
 - Towards improving indicator 13.1.1 Number of deaths, missing persons and directly affected persons attributed to disasters per 100,000 population

- COVID-19 behavioral impact: Face masks (VisualCit)
- Flood and gender SDG13 + SDG5
- TriggerCit: Timeliness of the delivery in evaluating the onset of flood events (Nepal and Thailand)

Social Media provides a trove of information that, if aggregated and analysed appropriately can provide important statistical indicators to policy makers.

We investigate whether it is possible to obtain such data by aggregating information from **images posted to social media**

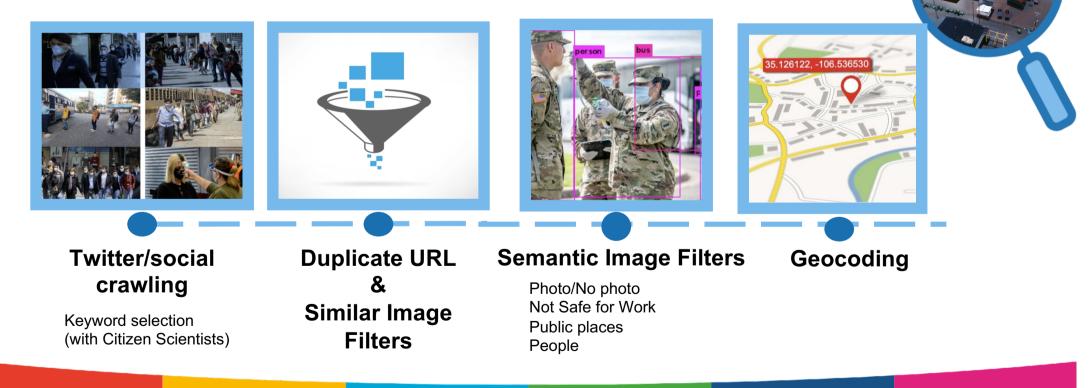
Data collection process on Twitter


- 1. Focus on a specific goal or situation
- 1. Twitter sensing with language-specific small word dictionaries
- 1. Selection of **potentially relevant** image contents with VisualCit
- 1. Text analysis of outputs for dictionary refinement
- 1. Geolocation of posts with CIME
- 1. Crowdsourcing to extract relevant information
- 1. Visualize results

Case studies

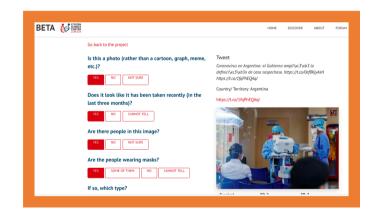
COVID-19 - From Tweets to a Face mask dataset and indicators

• Face mask usage



Examples end of August, 2020

V. Negri, et al., Image-based Social Sensing: Combining AI and the Crowd to Mine Policy-Adherence Indicators from Twitter, ICSE, Track Software Engineering in Society, May 2021



Collecting images from social media



Deriving indicators

Cit

10

Crowdsourcing

Project Builder Asking Citizen Scientists

Aggregate Statistics and

MLQuality evaluation Building indicators Building new classifiers

Visualisation

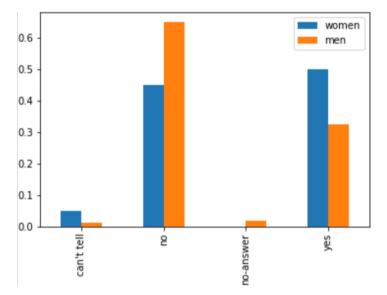
https://pernici.faculty.polimi.it/crowd4sdgpolimi/

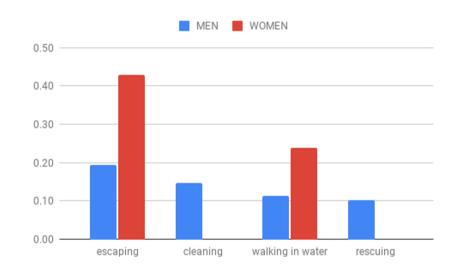
Evaluating the impact of floods on gender equality

- Twitter crawling
- Flood classifier (finetuning Xception pretrained with ImageNet)

The following link to the tweet might help in answering to the questions :

http://twitter.com/anuuser/status/1391177986897022981





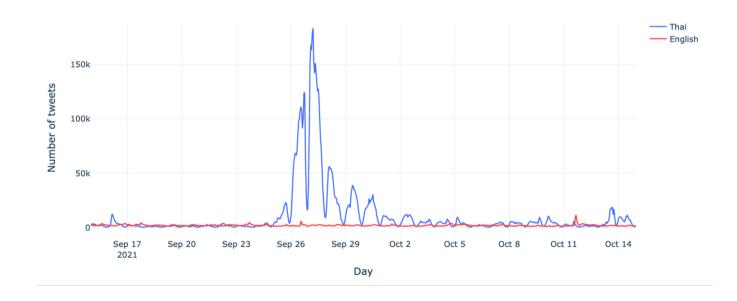
Are there shelters nearby? (Any place giving

Olimpia Rivera, Juan Felipe Calderon, Paul Planchon, Barbara Pernici, Evaluating the impact of floods on gender equality from social media evidence, 2nd International Research Workshop on Women IS, and Grand Challenges, Dec. 2021

Do they look in danger?

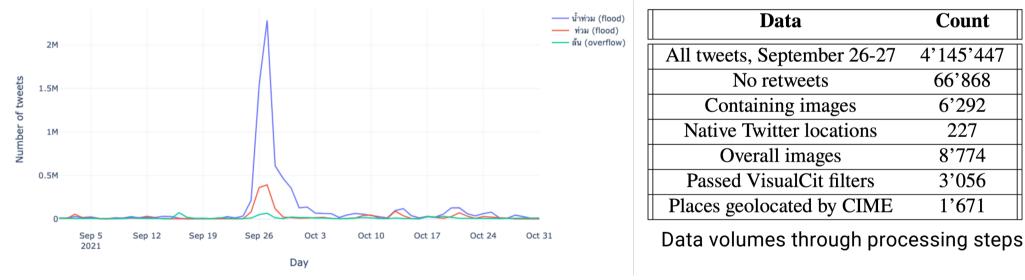
Most popular topics by gender

Olimpia Rivera, Juan Felipe Calderon, Paul Planchon, Barbara Pernici, Evaluating the impact of floods on gender equality from social media evidence, 2nd International Research Workshop on Women IS, and Grand Challenges, Dec. 2021

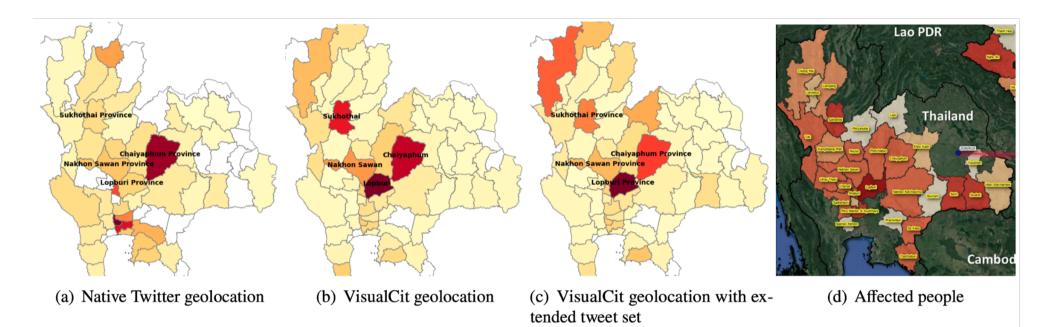


TriggerCit: Main phases

Keywords **Twitter count Tweet counts** (Locations) (lang dependent) If triggered API **Time-Series Analysis** Social Media Crawling Crowd4SDG VisualCit Tweets w. "flood" images Keywords Twitter (Locations) (lang dependent) API Crowdsourcing **Filtering for relevant** image-based flood 200 tweets only using a water classifier Location from geo-Text-to-location Area of Interest **Triggering Day** tagged tweets CIME С Trigger


We focused on very small, no-cost dictionaries. Language-based effect of events on social media volumes

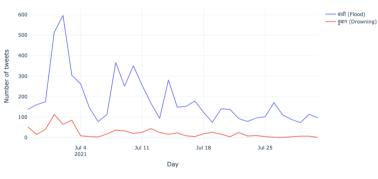
Experimental results – Thailand case study


The event onset is clearly identified

Tweet counts for seed dictionary entries

Experimental results – Thailand case study

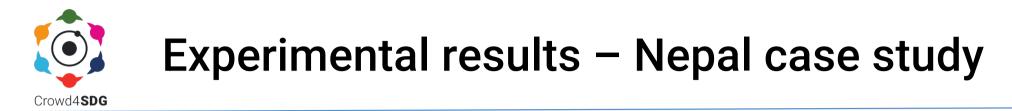
Geolocations / inhabitants ratio by region (a) Twitter native geolocations, (b) Twitter native + CIME geolocated, (c) Twitter native + CIME geolocated from extended dataset (with images + promising text-only tweets), and


(d) Number of affected persons by region at September, 28th (source: ReliefWeb)

Experimental results – Nepal case study

4000 - बाढी (Flood) 350 300 250 ž 2000 1500 1000 500 Jun 25 Jun 1 2021 Jun 10 Jun 13 Jun 19 Jun 22 1un 28 Jun 7 Jun 16 Day

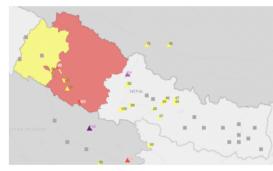
(a) Nepali entries in June

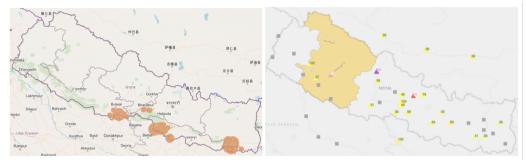

(b) Nepali entries in July

Tweet counts for seed dictionary entries

Data	June 16-17	July 1-2
All tweets	6'639	1'225
No retweets	2'807	594
Containing images	261	63
Native Twitter locations	8	10
Overall images	391	80
Passed through VisualCit	218	55
Places geolocated with CIME	51	10

Data volumes through processing steps


The onset of an announcer sub-event is clearly identified


Comparing June 16-17 and July 1-2 events with other sources

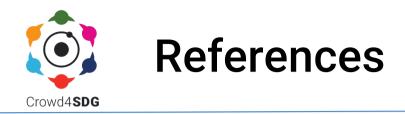
(a) Nepali tweets geolocated with CIME - June 16-17, 2021

(b) GloFAS reporting points and Rapid Impact Assessment map - June 17, 2021


(a) UNOSAT Flood AI Monitoring Dashboard - July 1-2, 2021 (b) GloFAS reporting points and Rapid Impact Assessment map - July 2, 2021

- July 1-2, 2021

(c) Geolocated Nepali tweets by district - July 1-2, 2021



Time of the events as reported from different sources

	Dates / Countries	Thailand	Nepal
Activation-based	UNOSAT activation	28/09/2021	30/06/2021
	Copernicus EMS activation	None	None
Manual	GDACS Disaster Alerts	27/09/2021 (Green Alert)	28/06/2021 (Green Alert)
Forecast	GloFAS	24/09/2021	28/06/2021
Manual	FloodList reported news	27/09/2021	04/07/2021
	TriggerCit	26/09/2021	02/07/2021

- Use validated event data as a ground truth, to benchmark and enhance the architecture components, evaluating uncertainty in space and time
- Explore the robustness of a supervised approach for automated event triggering
- Additional for data layers (additional systems, sensors, models, media) for an integrated multi-modal approach

- Carlo Bono, Barbara Pernici, Jose Luis Fernandez-Marquez, Amudha Ravi Shankar, Mehmet Oğuz Mülâyim, Edoardo Nemni, TriggerCit: Early Flood Alerting using Twitter and Geolocation a comparison with alternative sources, 2022, accepted for presentation at ISCRAM 2022, May 2022 preprint: <u>https://doi.org/10.48550/arXiv.2202.12014</u>
- Carlo Bono, Barbara Pernici. (2022). Twitter dataset of flood-related images for September 2021, Thailand and June/July 2021, Nepal floods [Data set]. Zenodo. <u>https://doi.org/10.5281/zenodo.6327151</u>
- V. Negri, D. Scuratti, S. Agresti, D. Rooein, G. Scalia, J. L. Fernandez-Marquez, A. Ravi Shankar, M. Carman and B. Pernici, Image-based Social Sensing: Combining AI and the Crowd to Mine Policy-Adherence Indicators from Twitter, ICSE, Track Software Engineering in Society, May 2021 <u>link to dataset and paper</u>
- G. Scalia, C. Francalanci, B. Pernici, CIME: Context-aware geolocation of emergency-related posts, GeoInformatica, 26 (1), 125-157 <u>https://link.springer.com/article/10.1007/s10707-021-00446-x</u>

Thank you!

www.crowd4sdg.eu

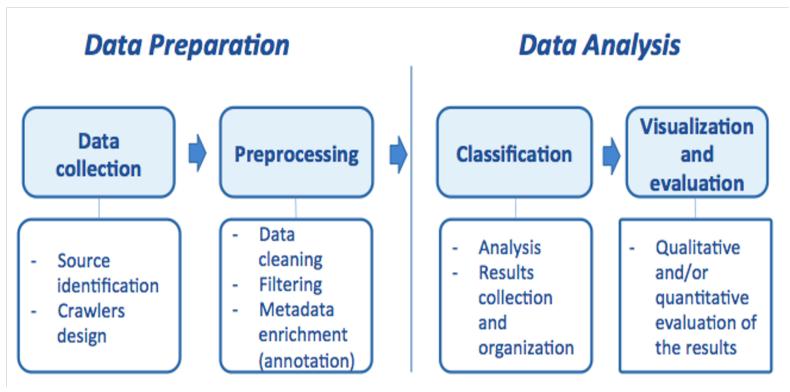
Social media analysis with VisualCit

crawling, extracting information from social media posts

Barbara Pernici, Carlo Bono, Politecnico di Milano

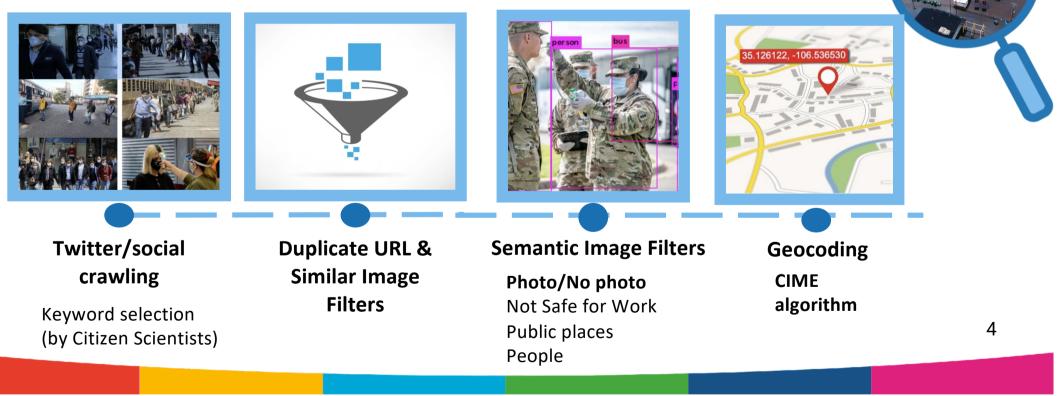
barbara.pernici@polimi.it

RCIS Tutorial, May 19, 2022


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 872944

- Extracting information from Twitter for emergencies (focus on floods)
- Analysis Pipelines
- VisualCit
- Hands on

Crowd4SDG: VisualCit pipeline



C. Cappiello et al., Modeling Adaptive Pipeline for Crowd Enhanced Processes, ER 2021, Oct. 2021

VisualCit Pipeline to build indicators from social media

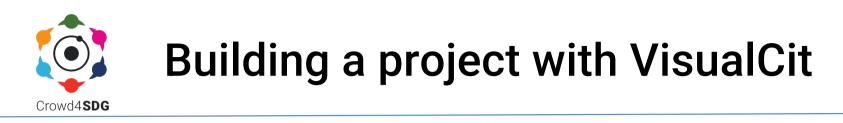
- Data Preparation
- Collecting images from social media

Visual

Pipeline to build indicators from social media

Data analysis - Deriving indicators

https://pernici.faculty.polimi.it/crowd4sdgpolimi/

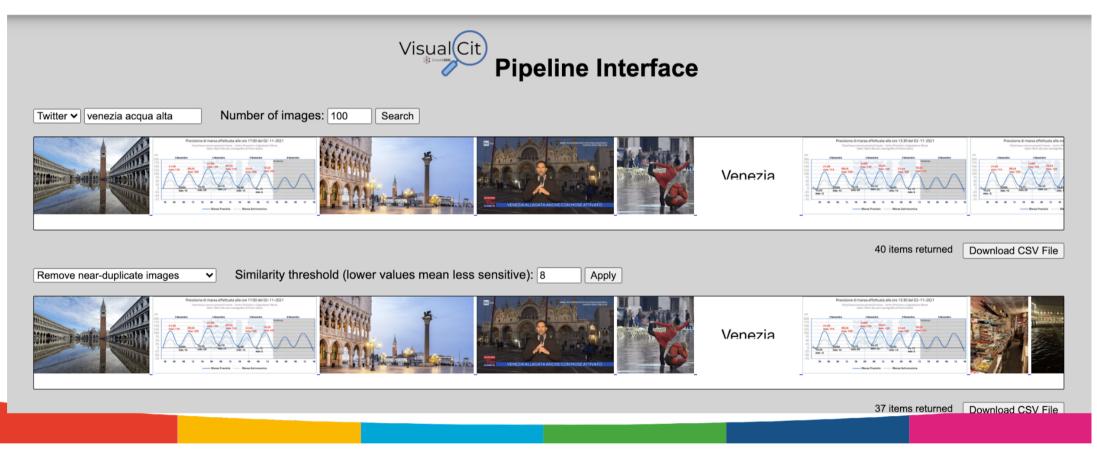

Visual

Crowd4SDG

POLITECNICO


MILANO 1863

100


0) Define your goals

- 1) Select images with VisualCit
 - Keywords
 - Filters
- Try it:
 - <u>http://visualcit.polimi.it:7778/</u>
- 2) Use the collected information
 - Set up a crowdsourcing initiative (design questions, identify crowd)
 - Compute indicators

POLITECNICO MILANO 1863

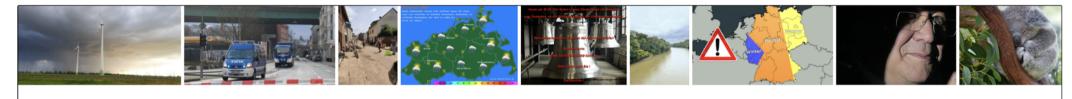
E2mC Keywords for floods in English and Italian

• en=

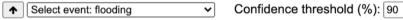
inundate, inundation, overflow, riverlevel, waterflow, swamped, mudslip, engulf, drainage, flooded, landslide, flooding, riverflow, immerse, torrential, flashflooding, mudflow, floodwater, rainfall, hailstorm, cloudburst, mudslip, precipitation, deluge, deluged, engulfed, flood, landslip, mudslide, submerged, swamp, torrent, waterlevel, tsunami, hail

• it=

alluvione, diga, inondazione, inondazioni, dell'alluvione, torrente, pioggia, piovosità, straripamen to, nubifragio, marea, allagamenti, erosione, frana, sommersi, sommersa, bonifica, aumentare, in ondato, sommerso, eccezionale, deflusso, precipitazione, diluvio, argine, annegato, salire, terrap ieno, allagamento, straripare, palude, drenaggio, valanga, grandine, scolo, lungofiume



Remove non-photos


Add location information

1

Confidence threshold (%): 90

43 items returned Download CSV File

✓ Apply

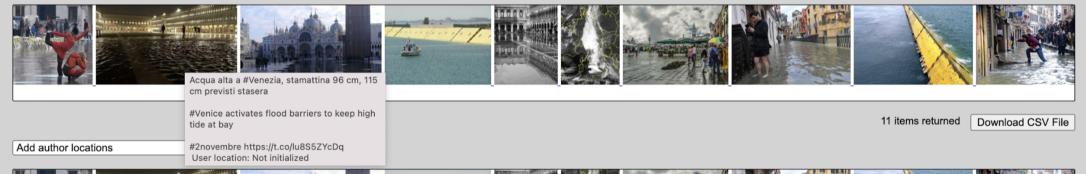
Apply

Download CSV File 11 items returned

+ Hamburg Bremen. BERLIN **NETHERLANDS**

10

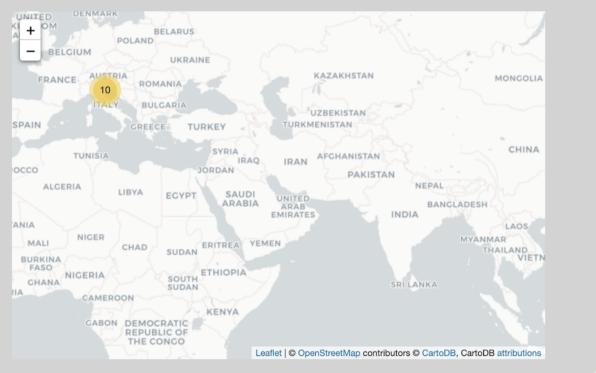
Remove non-photos


✓ Confidence threshold (%): 90 Apply

23 items returned Download CSV File

Select event: flooding

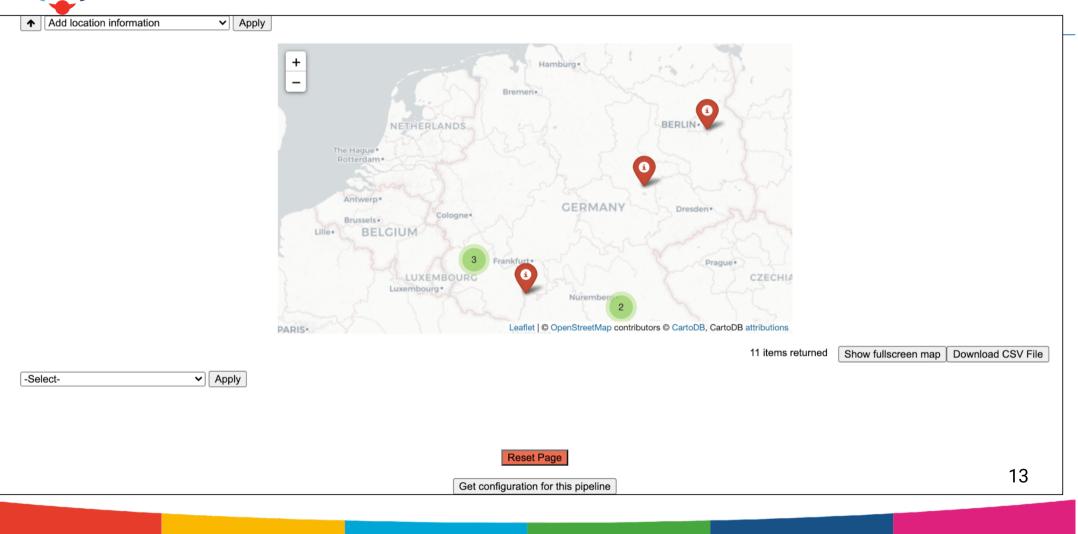
✓ Confidence threshold (%): 90 Apply



11 items returned Download CSV File

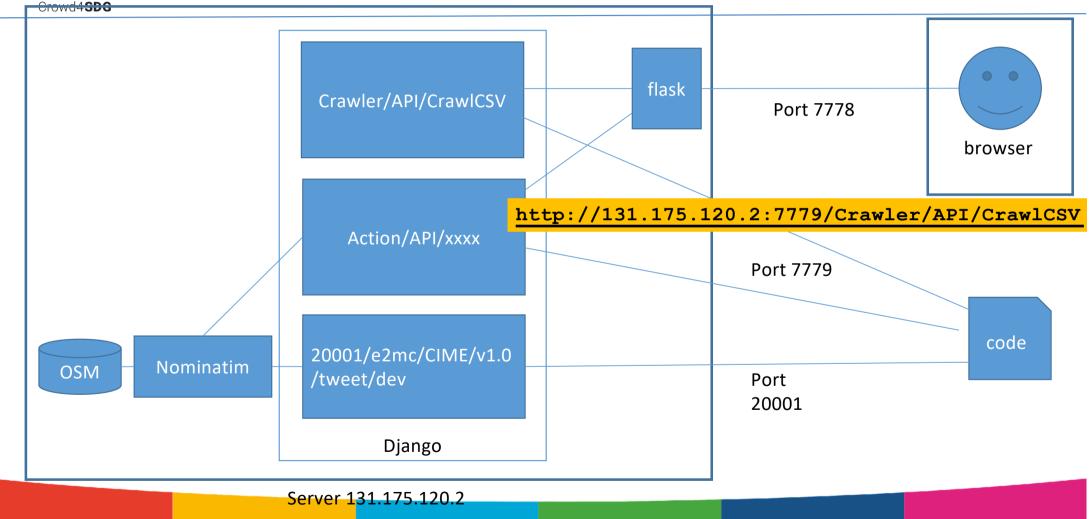
Show post locations on a map

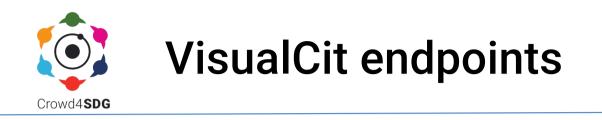
Apply



11 items returned Show fullscreen map Download CSV File

12




Interactive interface: visualization in browser http://visualcit.polimi.it:7778/

Web service: can be invoked inside a Python programme See <u>link</u> for details (discussed later)

Some **test data** can be found in <u>Link to folder</u>

Endpoint visualization

See services with Command + Option + I on MacOS Or Command F11 on Windows then Network

Documentation of available endpoints for VisualCit web services link

In VisualCit interactive service **Download configuration (Get pipeline configuration)**

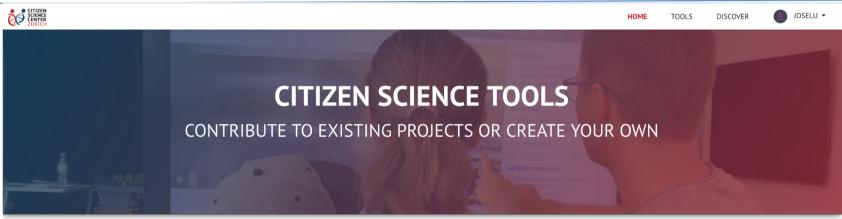
- Carlo Bono, Barbara Pernici, Jose Luis Fernandez-Marquez, Amudha Ravi Shankar, Mehmet Oğuz Mülâyim, Edoardo Nemni, TriggerCit: Early Flood Alerting using Twitter and Geolocation - a comparison with alternative sources, 2022, accepted for presentation at ISCRAM 2022, May 2022 preprint: <u>https://doi.org/10.48550/arXiv.2202.12014</u>
- Carlo Bono, Barbara Pernici. (2022). Twitter dataset of flood-related images for September 2021, Thailand and June/July 2021, Nepal floods [Data set]. Zenodo. https://doi.org/10.5281/zenodo.6327151
- V. Negri, D. Scuratti, S. Agresti, D. Rooein, G. Scalia, J. L. Fernandez-Marquez, A. Ravi Shankar, M. Carman and B. Pernici, Image-based Social Sensing: Combining AI and the Crowd to Mine Policy-Adherence Indicators from Twitter, ICSE, Track Software Engineering in Society, May 2021 <u>link to dataset and paper</u>
- G. Scalia, C. Francalanci, B. Pernici, CIME: Context-aware geolocation of emergency-related posts, GeoInformatica, 26 (1), 125-157 <u>https://link.springer.com/article/10.1007/s10707-021-00446-x</u>

Thank you!

www.crowd4sdg.eu

Meme: based on VGG16 (custom) Flood: based onXception (custom) Object: YOLOv5 (also DETR di Facebook, only available in backend) Scene: PlacesCNN (trained with Places365, based on VGG16) NSFW: based on MobileNetV2 (not customized)

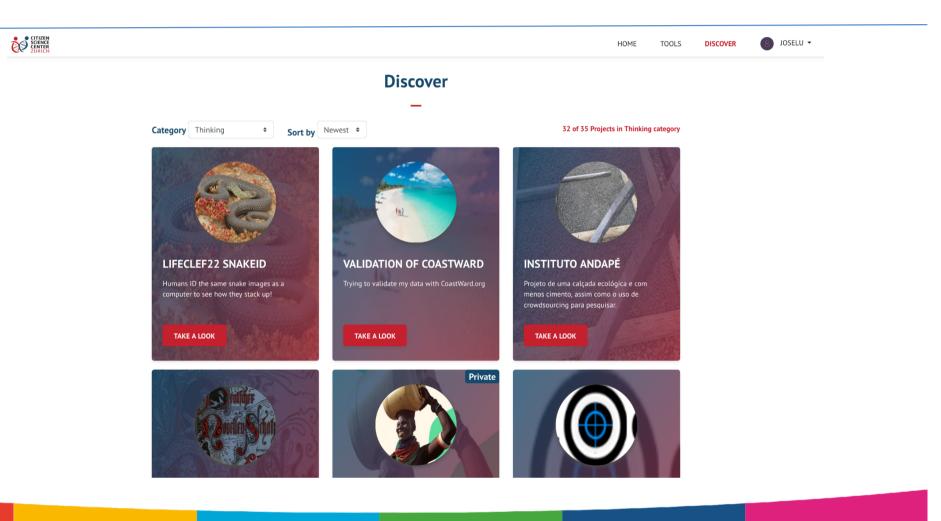
Citizen Science Project Builder


Jose Luis Fernandez-Marquez

RCIS 2022, Barcelona May 19, 2022

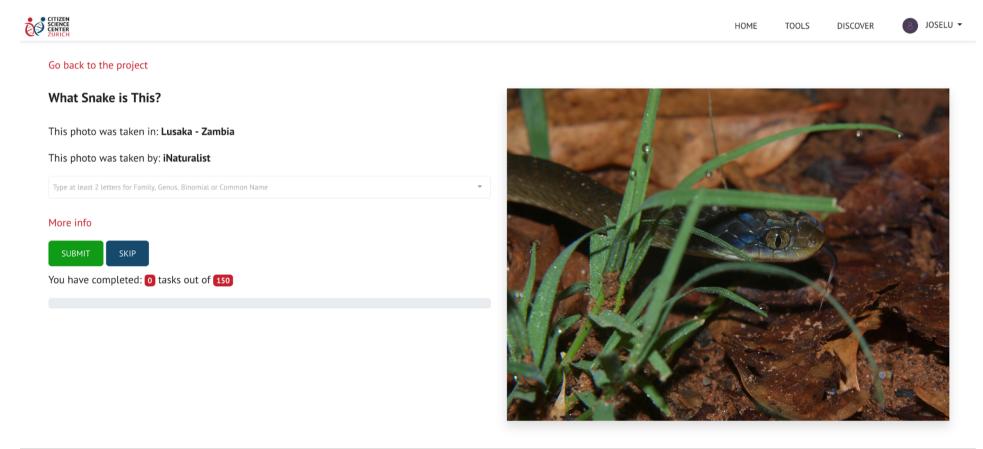
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 872944

The Citizen Science Center Zurich is developing a set of tools that make it easy for scientists and citizens to engage with Citizens Science projects.


CS	Proj	ject	Builde	er

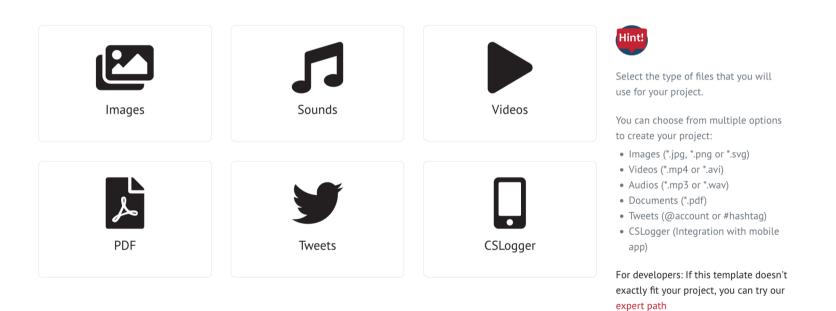
Discover

CS Logger



Discovering new projects

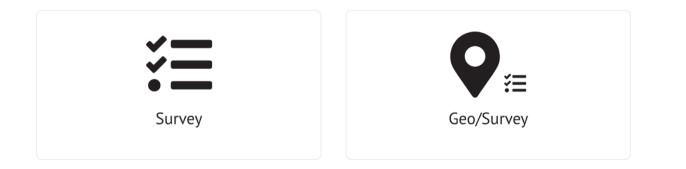
Contribute to an existing project



Create a new project

Preview Project

Select the type of files that you will work with.



Create a new project

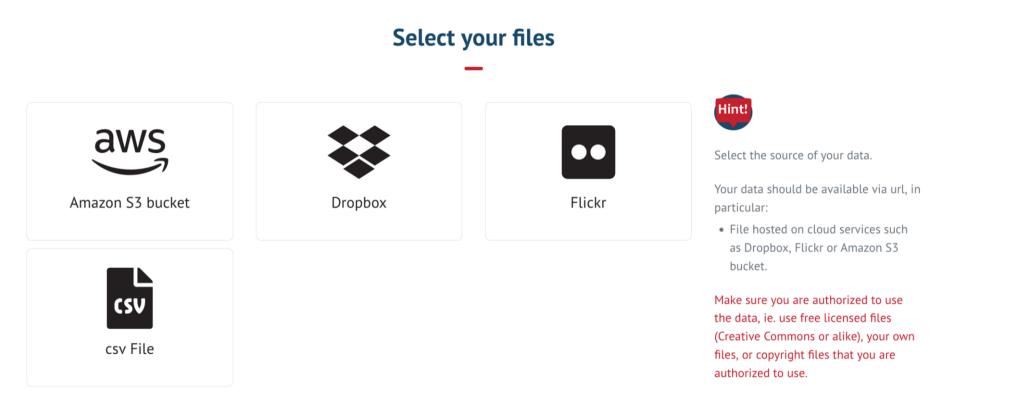
Go back

What do you want your contributors to do?

Here you can create the survey for your task presenter. You can select between Survey or Geo/Survey

This is a new version!

Two buttons should be visible, if not, please clear the cache and refresh this page.

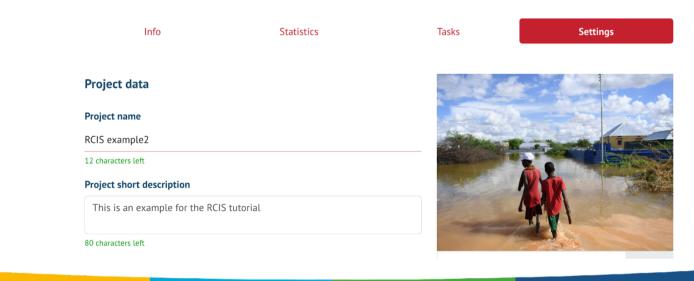


Create a new project

	Images Task	
	—	
Survey	ADD QUI	ESTION Hint!
Question 1		Instructions for Survey:
Question I		 Add a question (button "Add Question")
Required	Single Choice	 Choose the type of question (dropdown menu)
	Type of question	Enter the question and the possible
Question 1		answers Set optionality (use "Required" switch)
Write your question		 Add more answers if necessary (button "Add Answer")
The question should not be empty		Add more questions if necessary (button "Add Question")
		 If necessary, add "Condition" between
O Option 1		questions
The answer should not be empty		Example for Condition :
2		Question 1: Are the dogs in the image?
O Option 2		 Answer 1: Yes Answer 2: No
The answer should not be empty		 Answer 2: No Answer 3: I can't say
		Question 2: How many dogs in the image?
	ADD ANS	SWER
		Condition: Question 2 will be visible only
		if the answer to <i>Question 1</i> is "Yes".
		When on Question 2, click on "Condition",
CONTINUE		then select Question 1 as conditional
		question and select "Yes" as conditional answer.

Create a new project - Import tasks

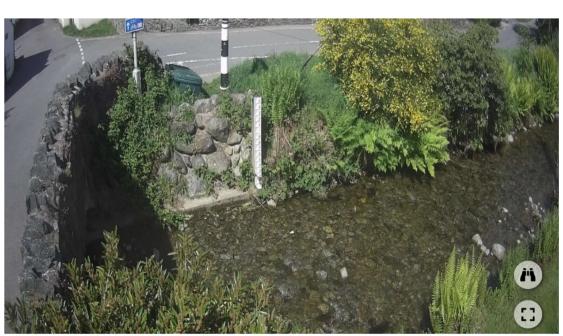
Our project is created!


JOSELU 🔻

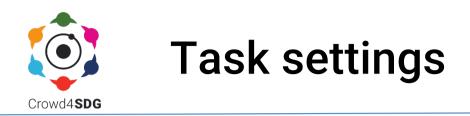
8

HOME

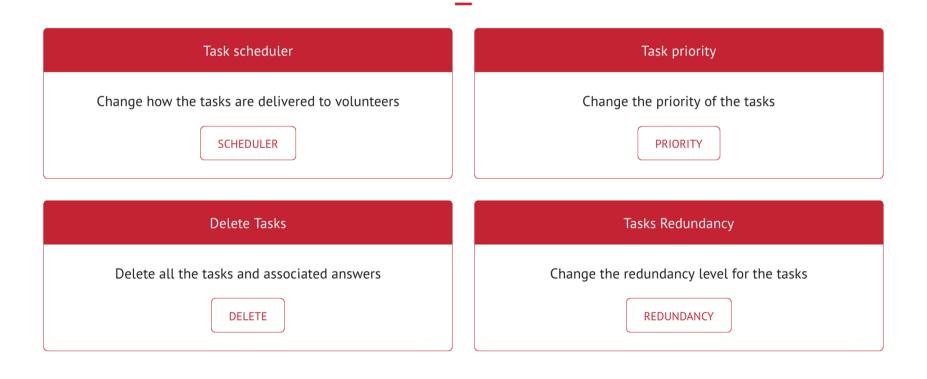
TOOLS


DISCOVER

Contributing to the project



Managing your project


Info	Statistics	Tasks	Settings
Import Tasks		Export Tasks	
Import new tasks (files)		Export tasks to JSON, CSV, or a	CKAN server
IMPORT		EXPORT	
Task Presenter		Settings	
Edit the task presenter (only for experts)		Configure the task scheduler, re	dundancy, etc.
EDITOR		SETTINGS	
Browse			
Check the progress on tasks.			

11

Task settings

Tasks Task Runs Results Export tasks in CSV format Export task runs in CSV format Export results in CSV format EXPORT EXPORT EXPORT **Export in JSON format** Task Runs Tasks Results Export tasks in JSON format Export task runs in JSON format Export results in JSON format EXPORT EXPORT EXPORT

Export in CSV format

What's next?

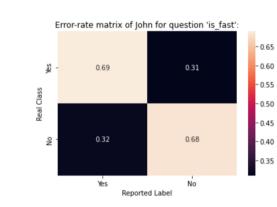
Crowd4**SDG**

	Lask_Iu	user_iu	15_1ast
0	Audi	John	Yes
1	Audi	Matthew	Yes
2	Audi	Andrew	Yes
3	BMW	John	Yes
4	BMW	Matthew	Yes
5	BMW	Matthew	Yes
6	Seat	John	No
7	Seat	Andrew	No
8	Seat	Matthew	No
9	Maserati	John	Yes
10	Maserati	Andrew	Yes
11	GM	Andrew	Yes
12	GM	Matthew	No
13	GM	John	No
14	Mazda	Andrew	Yes
15	Mazda	John	Yes
16	Mazda	Matthew	Yes
17	Kia	Matthew	Yes
18	Kia	Andrew	Yes
19	Kia	John	No
	Νά		

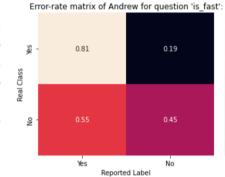
task_id user_id is_fast

Majority Voting		
	Yes	No
Audi	1.0	0.0
BMW	1.0	0.0
GM	0.0 1.0	
Kia	1.0	0.0
Maserati	1.0	0.0
Mazda	1.0	0.0
Seat	0.0	1.0

Probabilistic


	Yes	No
Audi	1.000000	0.000000
BMW	1.000000	0.000000
GM	0.333333	0.666667
Kia	0.666667	0.333333
Maserati	1.000000	0.000000
Mazda	1.000000	0.000000
Seat	0.000000	1.000000

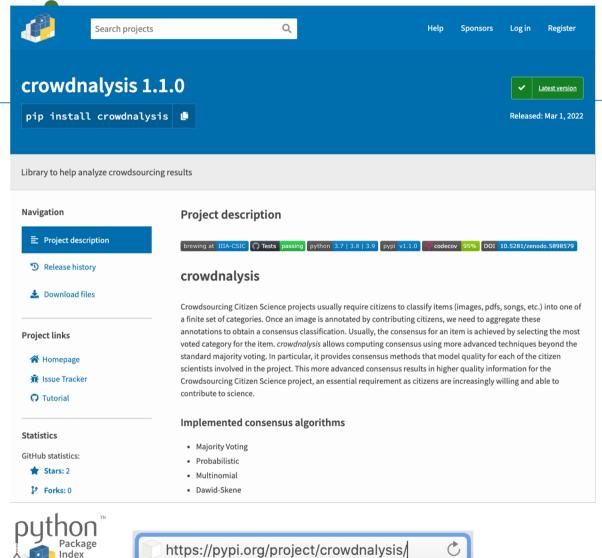
These **do NOT model** individual **annotator** performance.


Advanced consensus models - Dawid-Skene

		task_id	user_id	is_fast
	0	Audi	John	Yes
	1	Audi	Matthew	Yes
	2	Audi	Andrew	Yes
	3	BMW	John	Yes
	4	BMW	Matthew	Yes
	5	BMW	Matthew	Yes
	6	Seat	John	No
	7	Seat	Andrew	No
	8	Seat	Matthew	No
	9	Maserati	John	Yes
	10	Maserati	Andrew	Yes
(11	GM	Andrew	Yes
l	12	GM	Matthew	No
l	13	GM	John	No
	14	Mazda	Andrew	Yes
	15	Mazda	John	Yes
	16	Mazda	Matthew	Yes
	17	Kia	Matthew	Yes
	18	Kia	Andrew	Yes
	19	Kia	John	No

More reliable consensus is possible thanks to modelling [the annotator behavior.

Annotator	error-rates



Error-rate matrix of Matthew for question 'is fast': - 0.8 - 0.7 - 0.7 0.8 SS. - 0.6 - 0.6 Real Cla - 0.5 - 0.5 - 0.4 - 0.4 ٩ - 0.3 - 0.3 Yes No Reported Label

Consensus

	Yes	No
Audi	0.923616	0.076384
BMW	0.946553	0.053447
GM	0.271625	0.728375
Kia	0.716913	0.283087
Maserati	0.848372	0.151628
Mazda	0.923616	0.076384
Seat	0.096134	0.903866

Dawid, A. P., & Skene, A. M. (1979). Maximum Likelihood Estimation of Observer Error-Rates Using the EM Algorithm. *Applied Statistics*, 28(1), 20. https://doi.org/10.2307/2346806

crowdnalysis

analyzing crowdsourced data

• Import annotation data with preprocessing

Calculate inter-rater reliability

Model annotators

Compute the **consensus** on annotations

Conduct **prospective analysis** (e.g., 'accuracy vs. number of annotations')

Visualize consensus & annotator error-rates

and more ...

1

Thank you!

www.crowd4sdg.eu

crowdnalysis: Analyzing crowdsourced data

Oguz Mulayim

oguz@iiia.csic.es

Artificial Intelligence Research Institute (IIIA), CSIC

RCIS Tutorial, May 19, 2022

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 872944

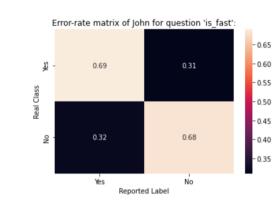
Crowd4**SDG**

	Lask_IU	user_iu	15_1ast	
0	Audi	John	Yes	
1	Audi	Matthew	Yes	
2	Audi	Andrew	Yes	
3	BMW	John	Yes	
4	BMW	Matthew	Yes	
5	BMW	Matthew	Yes	
6	Seat	John	No	
7	Seat	Andrew	No	
8	Seat	Matthew	No	
9	Maserati	John	Yes	
10	Maserati	Andrew	Yes	
11	GM	Andrew	Yes	
12	GM	Matthew	No	
13	GM	John	No	
14	Mazda	Andrew	Yes	
15	Mazda	John	Yes	
16	Mazda	Matthew	Yes	
17	Kia	Matthew	Yes	
18	Kia	Andrew	Yes	
19	Kia	John	No	
Cr	Crowdsourced annotations			

task id user id is fast

Majority Voting		
	Yes	No
Audi	1.0	0.0
BMW	1.0	0.0
GM	0.0	1.0
Kia	1.0	0.0
Maserati	1.0	0.0
Mazda	1.0	0.0
Seat	0.0	1.0

Probabilistic


	Yes	No
Audi	1.000000	0.000000
BMW	1.000000	0.000000
GM	0.333333	0.666667
Kia	0.666667	0.333333
Maserati	1.000000	0.000000
Mazda	1.000000	0.000000
Seat	0.000000	1.000000

These **do NOT model** individual **annotator** performance.

Advanced consensus models - Dawid-Skene

		task_id	user_id	is_fast
	0	Audi	John	Yes
	1	Audi	Matthew	Yes
	2	Audi	Andrew	Yes
	3	BMW	John	Yes
	4	BMW	Matthew	Yes
	5	BMW	Matthew	Yes
	6	Seat	John	No
	7	Seat	Andrew	No
	8	Seat	Matthew	No
	9	Maserati	John	Yes
	10	Maserati	Andrew	Yes
(11	GM	Andrew	Yes
l	12	GM	Matthew	No
l	13	GM	John	No
	14	Mazda	Andrew	Yes
	15	Mazda	John	Yes
	16	Mazda	Matthew	Yes
	17	Kia	Matthew	Yes
	18	Kia	Andrew	Yes
	19	Kia	John	No

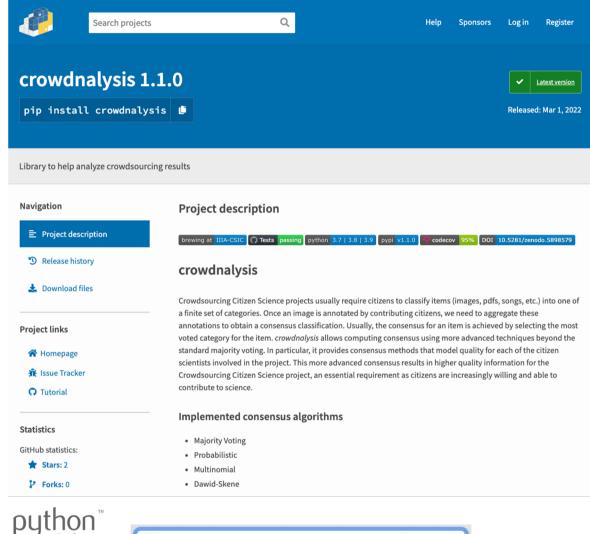
More reliable consensus is possible thanks to modelling [the annotator behavior.

Error-rate matrix of Andrew for question 'is_fast':

Yes

Annotator error-rates

Error-rate matrix of Matthew for question 'is fast': - 0.8 - 0.7 - 0.7 0.8 SS. - 0.6 - 0.6 Real Class - 0.5 - 0.5 - 0.4 - 0.4 ٩ - 0.3 - 0.3 Yes No Reported Label


Consensus

Reported Label

No

	Yes	No
Audi	0.923616	0.076384
BMW	0.946553	0.053447
GM	0.271625	0.728375
Kia	0.716913	0.283087
Maserati	0.848372	0.151628
Mazda	0.923616	0.076384
Seat	0.096134	0.903866

Dawid, A. P., & Skene, A. M. (1979). Maximum Likelihood Estimation of Observer Error-Rates Using the EM Algorithm. *Applied Statistics*, 28(1), 20. https://doi.org/10.2307/2346806

crowdnalysis analyzing crowdsourced data

- Import annotation data with preprocessing
- Calculate inter-rater reliability
- Model annotators
- Compute the consensus on annotations
- Conduct **prospective analysis** (e.g., 'accuracy vs. number of annotations')
- Visualize consensus & annotator error-rates
- and more ...

https://pypi.org/project/crowdnalysis/

4

Thank you!

www.crowd4sdg.eu

